File: //snap/google-cloud-cli/current/lib/surface/dataproc/workflow_templates/set_managed_cluster.py
# -*- coding: utf-8 -*- #
# Copyright 2015 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Set managed cluster for workflow template command."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from googlecloudsdk.api_lib.dataproc import compute_helpers
from googlecloudsdk.api_lib.dataproc import dataproc as dp
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.dataproc import clusters
from googlecloudsdk.command_lib.dataproc import flags
from googlecloudsdk.command_lib.util.args import labels_util
@base.DefaultUniverseOnly
class SetManagedCluster(base.UpdateCommand):
"""Set a managed cluster for the workflow template."""
detailed_help = {
'EXAMPLES': """
To update managed cluster in a workflow template, run:
$ {command} my_template --region=us-central1 --no-address --num-workers=10 \
--worker-machine-type=custom-6-23040
"""
}
@classmethod
def Args(cls, parser):
dataproc = dp.Dataproc(cls.ReleaseTrack())
parser.add_argument(
'--cluster-name',
help="""\
The name of the managed dataproc cluster.
If unspecified, the workflow template ID will be used.""")
clusters.ArgsForClusterRef(
parser,
dataproc,
cls.Beta(),
cls.Alpha(),
include_deprecated=cls.Beta(),
include_gke_platform_args=False)
flags.AddTemplateResourceArg(parser, 'set managed cluster',
dataproc.api_version)
if cls.Beta():
clusters.BetaArgsForClusterRef(parser)
@classmethod
def Beta(cls):
return cls.ReleaseTrack() != base.ReleaseTrack.GA
@classmethod
def Alpha(cls):
return cls.ReleaseTrack() == base.ReleaseTrack.ALPHA
@classmethod
def GetComputeReleaseTrack(cls):
if cls.Beta():
return base.ReleaseTrack.BETA
return base.ReleaseTrack.GA
def Run(self, args):
dataproc = dp.Dataproc(self.ReleaseTrack())
template_ref = args.CONCEPTS.template.Parse()
workflow_template = dataproc.GetRegionsWorkflowTemplate(
template_ref, args.version)
if args.cluster_name:
cluster_name = args.cluster_name
else:
cluster_name = template_ref.workflowTemplatesId
compute_resources = compute_helpers.GetComputeResources(
self.GetComputeReleaseTrack(), cluster_name, template_ref.regionsId)
cluster_config = clusters.GetClusterConfig(
args,
dataproc,
template_ref.projectsId,
compute_resources,
self.Beta(),
self.Alpha(),
include_deprecated=self.Beta())
labels = labels_util.ParseCreateArgs(
args, dataproc.messages.ManagedCluster.LabelsValue)
managed_cluster = dataproc.messages.ManagedCluster(
clusterName=cluster_name, config=cluster_config, labels=labels)
workflow_template.placement = dataproc.messages.WorkflowTemplatePlacement(
managedCluster=managed_cluster)
response = dataproc.client.projects_regions_workflowTemplates.Update(
workflow_template)
return response