File: //snap/google-cloud-cli/current/lib/surface/container/ai/profiles/accelerators/list.py
# -*- coding: utf-8 -*- #
# Copyright 2025 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Lists compatible accelerator profiles for GKE Inference Quickstart."""
from googlecloudsdk.api_lib.ai.recommender import util
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.run import commands
from googlecloudsdk.command_lib.run.printers import profiles_printer
from googlecloudsdk.core import exceptions
from googlecloudsdk.core import log
from googlecloudsdk.core.resource import resource_printer
_EXAMPLES = """
To list compatible accelerator profiles for a model, run:
$ {command} --model=deepseek-ai/DeepSeek-R1-Distill-Qwen-7B
"""
def decimal_to_amount(decimal_value):
"""Converts a decimal representation to an Amount proto."""
units = int(decimal_value)
nanos = int((decimal_value - units) * 1e9)
return (units, nanos)
@base.DefaultUniverseOnly
@base.ReleaseTracks(base.ReleaseTrack.ALPHA)
class List(commands.List):
"""List compatible accelerator profiles.
This command lists all supported accelerators with their performance details.
By default, the supported accelerators are displayed in a table format with
select information for each accelerator. To see all details, use
--format=yaml.
To get supported model, model servers, and model server versions, run `gcloud
alpha container ai profiles models list`, `gcloud alpha container ai
profiles model-servers list`, and `gcloud alpha container ai profiles
model-server-versions list`.
Alternatively, run `gcloud alpha container ai profiles
model-and-server-combinations list` to get all supported model and server
combinations.
"""
@staticmethod
def Args(parser):
parser.add_argument(
"--model",
required=True,
help="The model.",
)
parser.add_argument(
"--model-server",
help=(
"The model server. If not specified, this defaults to any model"
" server."
),
)
parser.add_argument(
"--model-server-version",
help=(
"The model server version. If not specified, this defaults to the"
" latest version."
),
)
parser.add_argument(
"--max-ntpot-milliseconds",
type=int,
help=(
"The maximum normalized time per output token (NTPOT) in"
" milliseconds. NTPOT is measured as the request_latency /"
" output_tokens. If this field is set, the command will only return"
" accelerators that can meet the target ntpot milliseconds and"
" display their throughput performance at the target latency."
" Otherwise, the command will return all accelerators and display"
" their highest throughput performance."
),
)
parser.add_argument(
"--target-cost-per-million-output-tokens",
hidden=True,
type=float,
required=False,
help=(
"The target cost per million output tokens to filter profiles by,"
" unit is 1 USD up to 5 decimal places."
),
)
parser.add_argument(
"--target-cost-per-million-input-tokens",
hidden=True,
type=float,
required=False,
help=(
"The target cost per million input tokens to filter profiles by,"
" unit is 1 USD up to 5 decimal places."
),
)
parser.add_argument(
"--pricing-model",
hidden=True,
required=False,
type=str,
help=(
"The pricing model to use to calculate token cost. Currently, this"
" supports on-demand, spot, 3-years-cud, 1-year-cud"
),
)
parser.add_argument(
"--format",
type=str,
help="The format to use for the output. Default is table. yaml|table",
)
resource_printer.RegisterFormatter(
profiles_printer.PROFILES_PRINTER_FORMAT,
profiles_printer.ProfilePrinter,
hidden=True,
)
parser.display_info.AddFormat(profiles_printer.PROFILES_PRINTER_FORMAT)
parser.display_info.AddFormat(
"table("
"acceleratorType,"
"modelAndModelServerInfo.modelName,"
"modelAndModelServerInfo.modelServerName,"
"modelAndModelServerInfo.modelServerVersion,"
"resourcesUsed.acceleratorCount,"
"performanceStats.outputTokensPerSecond,"
"performanceStats.ntpotMilliseconds"
")"
)
def Run(self, args):
client = util.GetClientInstance(base.ReleaseTrack.ALPHA)
messages = util.GetMessagesModule(base.ReleaseTrack.ALPHA)
try:
request = messages.GkerecommenderAcceleratorsListRequest(
modelName=args.model,
modelServerName=args.model_server,
modelServerVersion=args.model_server_version,
performanceRequirements_maxNtpotMilliseconds=args.max_ntpot_milliseconds,
performanceRequirements_cost_pricingModel=args.pricing_model,
)
if args.target_cost_per_million_output_tokens:
units, nanos = decimal_to_amount(
args.target_cost_per_million_output_tokens
)
request.performanceRequirements_cost_costPerMillionNormalizedOutputTokens_units = (
units
)
request.performanceRequirements_cost_costPerMillionNormalizedOutputTokens_nanos = (
nanos
)
if args.target_cost_per_million_input_tokens:
units, nanos = decimal_to_amount(
args.target_cost_per_million_input_tokens
)
request.performanceRequirements_cost_costPerMillionInputTokens_units = (
units
)
request.performanceRequirements_cost_costPerMillionInputTokens_nanos = (
nanos
)
response = client.accelerators.List(request)
self.comments = response.comments
if response:
return response
else:
return []
except exceptions.Error as e:
log.error(f"An error has occurred: {e}")
log.status.Print(f"An error has occurred: {e}")
return []