File: //snap/google-cloud-cli/current/lib/surface/ai/ray/job/submit.py
# -*- coding: utf-8 -*- #
# Copyright 2025 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Command to create a serverless ray job in Vertex AI."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from googlecloudsdk.api_lib.ai.serverless_ray_jobs import client
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import endpoint_util
from googlecloudsdk.command_lib.ai.serverless_ray_jobs import flags
from googlecloudsdk.command_lib.ai.serverless_ray_jobs import serverless_ray_jobs_util
from googlecloudsdk.command_lib.util.args import labels_util
from googlecloudsdk.core import log
_OPERATION_RESOURCE_NAME_TEMPLATE = (
'projects/{project_number}/locations/{region}/operations/{operation_id}'
)
_JOB_CREATION_DISPLAY_MESSAGE_TEMPLATE = """\
Serverless Ray Job [{job_name}] is submitted successfully.
Your job is still active. You may view the status of your job with the command:
$ {command_prefix} ai ray job describe {job_name}
"""
@base.ReleaseTracks(base.ReleaseTrack.GA)
@base.UniverseCompatible
class CreateGA(base.CreateCommand):
"""Create a new serverless ray job.
This command will attempt to run the serverless ray job immediately upon
creation.
## EXAMPLES
To create a job under project ``example'' in region
``us-central1'', run:
$ {command} --region=us-central1 --project=example
--resource-spec=resource-unit=1,disk-size=100
--entrypoint='gs://test-project/ray_job.py'
--display-name=test
"""
_version = constants.GA_VERSION
@staticmethod
def Args(parser):
flags.AddCreateServerlessRayJobFlags(parser)
def _DisplayResult(self, response):
cmd_prefix = 'gcloud'
if self.ReleaseTrack().prefix:
cmd_prefix += ' ' + self.ReleaseTrack().prefix
log.status.Print(
_JOB_CREATION_DISPLAY_MESSAGE_TEMPLATE.format(
job_name=response.name, command_prefix=cmd_prefix
)
)
def _PrepareJobSpec(self, args, api_client):
job_spec = serverless_ray_jobs_util.ConstructServerlessRayJobSpec(
api_client,
main_python_file_uri=args.entrypoint,
entrypoint_file_args=args.entrypoint_file_args,
archive_uris=args.archive_uris,
service_account=args.service_account,
container_image_uri=args.container_image_uri,
resource_spec=args.resource_spec,
)
return job_spec
def Run(self, args):
# TODO(b/390723702): Add request validation.
region_ref = args.CONCEPTS.region.Parse()
region = region_ref.AsDict()['locationsId']
with endpoint_util.AiplatformEndpointOverrides(
version=self._version, region=region):
api_client = client.ServerlessRayJobsClient(version=self._version)
print('self._version: {}'.format(self._version))
job_spec = self._PrepareJobSpec(args, api_client)
labels = labels_util.ParseCreateArgs(
args, api_client.ServerlessRayJobMessage().LabelsValue
)
response = api_client.Create(
parent=region_ref.RelativeName(),
job_spec=job_spec,
display_name=args.display_name,
labels=labels,
)
self._DisplayResult(response)
return response
@base.ReleaseTracks(base.ReleaseTrack.BETA)
class CreatePreGA(CreateGA):
"""Create a new custom job.
This command will attempt to run the custom job immediately upon creation.
## EXAMPLES
To create a job under project ``example'' in region
``us-central1'', run:
$ {command} --region=us-central1 --project=example
--worker-pool-spec=replica-count=1,machine-type='n1-highmem-2',container-image-uri='gcr.io/ucaip-test/ucaip-training-test'
--display-name=test
"""
_version = constants.BETA_VERSION