File: //snap/google-cloud-cli/current/lib/surface/ai/models/upload.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Command to upload a model in Vertex AI."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from apitools.base.py import extra_types
from googlecloudsdk.api_lib.ai import operations
from googlecloudsdk.api_lib.ai.models import client
from googlecloudsdk.api_lib.util import apis
from googlecloudsdk.api_lib.util import messages as messages_util
from googlecloudsdk.calliope import base
from googlecloudsdk.calliope import exceptions as gcloud_exceptions
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import endpoint_util
from googlecloudsdk.command_lib.ai import flags
from googlecloudsdk.command_lib.ai import models_util
from googlecloudsdk.command_lib.ai import operations_util
from googlecloudsdk.command_lib.ai import region_util
from googlecloudsdk.core import yaml
@base.ReleaseTracks(base.ReleaseTrack.GA)
@base.UniverseCompatible
class UploadV1(base.CreateCommand):
"""Upload a new model.
## EXAMPLES
To upload a model under project ``example'' in region
``us-central1'', run:
$ {command} --container-image-uri="gcr.io/example/my-image"
--description=example-model --display-name=my-model
--artifact-uri='gs://bucket/path' --project=example --region=us-central1
"""
def __init__(self, *args, **kwargs):
super(UploadV1, self).__init__(*args, **kwargs)
client_instance = apis.GetClientInstance(
constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[constants.GA_VERSION])
self.messages = client.ModelsClient(
client=client_instance,
messages=client_instance.MESSAGES_MODULE).messages
@staticmethod
def Args(parser):
flags.AddUploadModelFlags(parser, region_util.PromptForOpRegion)
def Run(self, args):
region_ref = args.CONCEPTS.region.Parse()
region = region_ref.AsDict()['locationsId']
with endpoint_util.AiplatformEndpointOverrides(
version=constants.GA_VERSION, region=region):
client_instance = apis.GetClientInstance(
constants.AI_PLATFORM_API_NAME,
constants.AI_PLATFORM_API_VERSION[constants.GA_VERSION])
operation = client.ModelsClient(
client=client_instance,
messages=client_instance.MESSAGES_MODULE).UploadV1(
region_ref,
args.display_name,
args.description,
args.version_description,
args.artifact_uri,
args.container_image_uri,
args.container_command,
args.container_args,
args.container_env_vars,
args.container_ports,
args.container_grpc_ports,
args.container_predict_route,
args.container_health_route,
args.container_deployment_timeout_seconds,
args.container_shared_memory_size_mb,
args.container_startup_probe_exec,
args.container_startup_probe_period_seconds,
args.container_startup_probe_timeout_seconds,
args.container_health_probe_exec,
args.container_health_probe_period_seconds,
args.container_health_probe_timeout_seconds,
explanation_spec=self._BuildExplanationSpec(args),
parent_model=args.parent_model,
model_id=args.model_id,
version_aliases=args.version_aliases,
labels=args.labels)
return operations_util.WaitForOpMaybe(
operations_client=operations.OperationsClient(
client=client_instance, messages=client_instance.MESSAGES_MODULE),
op=operation,
op_ref=models_util.ParseModelOperation(operation.name))
def _BuildExplanationSpec(self, args):
"""Generate explanation configs if anything related to XAI is specified.
Args:
args: argparse.Namespace. All the arguments that were provided to this
command invocation.
Returns:
An object of GoogleCloudAiplatformV1ExplanationSpec.
Raises:
BadArgumentException: An error if the explanation method provided can not
be recognized.
"""
parameters = None
method = args.explanation_method
if not method:
return None
if method.lower() == 'integrated-gradients':
parameters = (
self.messages.GoogleCloudAiplatformV1ExplanationParameters(
integratedGradientsAttribution=self.messages
.GoogleCloudAiplatformV1IntegratedGradientsAttribution(
stepCount=args.explanation_step_count,
smoothGradConfig=self._BuildSmoothGradConfig(args))))
elif method.lower() == 'xrai':
parameters = (
self.messages.GoogleCloudAiplatformV1ExplanationParameters(
xraiAttribution=self.messages
.GoogleCloudAiplatformV1XraiAttribution(
stepCount=args.explanation_step_count,
smoothGradConfig=self._BuildSmoothGradConfig(args))))
elif method.lower() == 'sampled-shapley':
parameters = (
self.messages.GoogleCloudAiplatformV1ExplanationParameters(
sampledShapleyAttribution=self.messages
.GoogleCloudAiplatformV1SampledShapleyAttribution(
pathCount=args.explanation_path_count)))
else:
raise gcloud_exceptions.BadArgumentException(
'--explanation-method',
'Explanation method must be one of `integrated-gradients`, '
'`xrai` and `sampled-shapley`.')
return self.messages.GoogleCloudAiplatformV1ExplanationSpec(
metadata=self._ReadExplanationMetadata(args.explanation_metadata_file),
parameters=parameters)
def _BuildSmoothGradConfig(self, args):
"""Generate smooth grad configs from the arguments specified.
Args:
args: argparse.Namespace. All the arguments that were provided to this
command invocation.
Returns:
An object of GoogleCloudAiplatformV1SmoothGradConfig.
Raises:
BadArgumentException: An error if both smooth-grad-noise-sigma and
smooth-grad-noise-sigma-by-feature are set.
"""
if (args.smooth_grad_noise_sigma is None and
args.smooth_grad_noisy_sample_count is None and
args.smooth_grad_noise_sigma_by_feature is None):
return None
if (args.smooth_grad_noise_sigma is not None and
args.smooth_grad_noise_sigma_by_feature is not None):
raise gcloud_exceptions.BadArgumentException(
'--smooth-grad-noise-sigma', 'Only one of smooth-grad-noise-sigma '
'and smooth-grad-noise-sigma-by-feature can be set.')
smooth_grad_config = (
self.messages.GoogleCloudAiplatformV1SmoothGradConfig(
noiseSigma=args.smooth_grad_noise_sigma,
noisySampleCount=args.smooth_grad_noisy_sample_count))
sigmas = args.smooth_grad_noise_sigma_by_feature
if sigmas:
smooth_grad_config.featureNoiseSigma = (
self.messages.GoogleCloudAiplatformV1FeatureNoiseSigma(noiseSigma=[
self.messages
.GoogleCloudAiplatformV1FeatureNoiseSigmaNoiseSigmaForFeature(
name=k, sigma=float(sigmas[k])) for k in sigmas
]))
return smooth_grad_config
def _ReadExplanationMetadata(self, explanation_metadata_file):
"""Read local explanation metadata file provided.
Args:
explanation_metadata_file: str. A local file for explanation metadata.
Returns:
An object of GoogleCloudAiplatformV1ExplanationMetadata.
Raises:
BadArgumentException: An error if explanation_metadata_file is None.
"""
explanation_metadata = None
if not explanation_metadata_file:
return explanation_metadata
# Yaml is a superset of json, so parse json file as yaml.
data = yaml.load_path(explanation_metadata_file)
if data:
explanation_metadata = messages_util.DictToMessageWithErrorCheck(
data, self.messages.GoogleCloudAiplatformV1ExplanationMetadata)
return explanation_metadata
@base.ReleaseTracks(base.ReleaseTrack.ALPHA, base.ReleaseTrack.BETA)
@base.UniverseCompatible
class UploadV1Beta1(UploadV1):
"""Upload a new model.
## EXAMPLES
To upload a model under project `example` in region
`us-central1`, run:
$ {command} --container-image-uri="gcr.io/example/my-image"
--description=example-model --display-name=my-model
--artifact-uri='gs://bucket/path' --project=example --region=us-central1
"""
def __init__(self, *args, **kwargs):
super(UploadV1Beta1, self).__init__(*args, **kwargs)
self.messages = client.ModelsClient().messages
@staticmethod
def Args(parser):
flags.AddUploadModelFlags(parser, region_util.PromptForOpRegion)
flags.AddUploadModelFlagsForSimilarity(parser)
def Run(self, args):
region_ref = args.CONCEPTS.region.Parse()
region = region_ref.AsDict()['locationsId']
with endpoint_util.AiplatformEndpointOverrides(
version=constants.BETA_VERSION, region=region):
operation = client.ModelsClient().UploadV1Beta1(
region_ref,
args.display_name,
args.description,
args.version_description,
args.artifact_uri,
args.container_image_uri,
args.container_command,
args.container_args,
args.container_env_vars,
args.container_ports,
args.container_grpc_ports,
args.container_predict_route,
args.container_health_route,
args.container_deployment_timeout_seconds,
args.container_shared_memory_size_mb,
args.container_startup_probe_exec,
args.container_startup_probe_period_seconds,
args.container_startup_probe_timeout_seconds,
args.container_health_probe_exec,
args.container_health_probe_period_seconds,
args.container_health_probe_timeout_seconds,
self._BuildExplanationSpec(args),
parent_model=args.parent_model,
model_id=args.model_id,
version_aliases=args.version_aliases,
labels=args.labels)
return operations_util.WaitForOpMaybe(
operations_client=operations.OperationsClient(),
op=operation,
op_ref=models_util.ParseModelOperation(operation.name))
def _BuildExplanationSpec(self, args):
parameters = None
method = args.explanation_method
if not method:
return None
if method.lower() == 'integrated-gradients':
parameters = (
self.messages.GoogleCloudAiplatformV1beta1ExplanationParameters(
integratedGradientsAttribution=self.messages
.GoogleCloudAiplatformV1beta1IntegratedGradientsAttribution(
stepCount=args.explanation_step_count,
smoothGradConfig=self._BuildSmoothGradConfig(args))))
elif method.lower() == 'xrai':
parameters = (
self.messages.GoogleCloudAiplatformV1beta1ExplanationParameters(
xraiAttribution=self.messages
.GoogleCloudAiplatformV1beta1XraiAttribution(
stepCount=args.explanation_step_count,
smoothGradConfig=self._BuildSmoothGradConfig(args))))
elif method.lower() == 'sampled-shapley':
parameters = (
self.messages.GoogleCloudAiplatformV1beta1ExplanationParameters(
sampledShapleyAttribution=self.messages
.GoogleCloudAiplatformV1beta1SampledShapleyAttribution(
pathCount=args.explanation_path_count)))
elif method.lower() == 'examples':
if args.explanation_nearest_neighbor_search_config_file:
parameters = (
self.messages.GoogleCloudAiplatformV1beta1ExplanationParameters(
examples=self.messages.GoogleCloudAiplatformV1beta1Examples(
gcsSource=self.messages
.GoogleCloudAiplatformV1beta1GcsSource(uris=args.uris),
neighborCount=args.explanation_neighbor_count,
nearestNeighborSearchConfig=self._ReadIndexMetadata(
args.explanation_nearest_neighbor_search_config_file))))
else:
parameters = (
self.messages.GoogleCloudAiplatformV1beta1ExplanationParameters(
examples=self.messages.GoogleCloudAiplatformV1beta1Examples(
gcsSource=self.messages
.GoogleCloudAiplatformV1beta1GcsSource(uris=args.uris),
neighborCount=args.explanation_neighbor_count,
presets=self.messages.GoogleCloudAiplatformV1beta1Presets(
modality=self.messages
.GoogleCloudAiplatformV1beta1Presets
.ModalityValueValuesEnum(args.explanation_modality),
query=self.messages.GoogleCloudAiplatformV1beta1Presets
.QueryValueValuesEnum(args.explanation_query)))))
else:
raise gcloud_exceptions.BadArgumentException(
'--explanation-method',
'Explanation method must be one of `integrated-gradients`, '
'`xrai`, `sampled-shapley` and `examples`.')
return self.messages.GoogleCloudAiplatformV1beta1ExplanationSpec(
metadata=self._ReadExplanationMetadata(args.explanation_metadata_file),
parameters=parameters)
def _BuildSmoothGradConfig(self, args):
if (args.smooth_grad_noise_sigma is None and
args.smooth_grad_noisy_sample_count is None and
args.smooth_grad_noise_sigma_by_feature is None):
return None
if (args.smooth_grad_noise_sigma is not None and
args.smooth_grad_noise_sigma_by_feature is not None):
raise gcloud_exceptions.BadArgumentException(
'--smooth-grad-noise-sigma', 'Only one of smooth-grad-noise-sigma '
'and smooth-grad-noise-sigma-by-feature can be set.')
smooth_grad_config = (
self.messages.GoogleCloudAiplatformV1beta1SmoothGradConfig(
noiseSigma=args.smooth_grad_noise_sigma,
noisySampleCount=args.smooth_grad_noisy_sample_count))
sigmas = args.smooth_grad_noise_sigma_by_feature
if sigmas:
smooth_grad_config.featureNoiseSigma = (
self.messages
.GoogleCloudAiplatformV1beta1FeatureNoiseSigma(noiseSigma=[
self.messages.
GoogleCloudAiplatformV1beta1FeatureNoiseSigmaNoiseSigmaForFeature(
name=k, sigma=float(sigmas[k])) for k in sigmas
]))
return smooth_grad_config
def _ReadExplanationMetadata(self, explanation_metadata_file):
explanation_metadata = None
if not explanation_metadata_file:
return explanation_metadata
# Yaml is a superset of json, so parse json file as yaml.
data = yaml.load_path(explanation_metadata_file)
if data:
explanation_metadata = messages_util.DictToMessageWithErrorCheck(
data, self.messages.GoogleCloudAiplatformV1beta1ExplanationMetadata)
return explanation_metadata
def _ReadIndexMetadata(self, index_metadata_file):
"""Parse json metadata file."""
index_metadata = None
# Yaml is a superset of json, so parse json file as yaml.
data = yaml.load_path(index_metadata_file)
if data:
index_metadata = messages_util.DictToMessageWithErrorCheck(
data, extra_types.JsonValue)
return index_metadata