File: //snap/google-cloud-cli/current/lib/surface/ai/endpoints/stream_raw_predict.py
# -*- coding: utf-8 -*- #
# Copyright 2024 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Vertex AI endpoints stream-raw-predict command."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
import json
import sys
from googlecloudsdk.api_lib.ai.endpoints import client
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.ai import constants
from googlecloudsdk.command_lib.ai import endpoint_util
from googlecloudsdk.command_lib.ai import flags
from googlecloudsdk.command_lib.ai import region_util
from googlecloudsdk.core import exceptions as core_exceptions
from googlecloudsdk.core.console import console_io
import six
def _AddArgs(parser):
flags.AddEndpointResourceArg(
parser,
'to do online stream raw prediction',
prompt_func=region_util.PromptForOpRegion,
)
flags.GetRawPredictHeadersArg().AddToParser(parser)
flags.GetRawPredictRequestArg().AddToParser(parser)
def _Run(args, version):
"""Run Vertex AI online prediction."""
endpoint_ref = args.CONCEPTS.endpoint.Parse()
args.region = endpoint_ref.AsDict()['locationsId']
with endpoint_util.AiplatformEndpointOverrides(version, region=args.region):
if args.request.startswith('@'):
request = console_io.ReadFromFileOrStdin(args.request[1:], binary=True)
else:
request = args.request.encode('utf-8')
endpoints_client = client.EndpointsClient(version=version)
for response in endpoints_client.StreamRawPredict(
endpoint_ref, args.http_headers, request
):
# Workaround since gcloud only supports protobufs as JSON objects. Since
# stream raw predict can return anything, write stream raw bytes to
# stdout.
if not args.IsSpecified('format'):
sys.stdout.buffer.write(response)
continue
# If user asked for formatting, assume it's a JSON object.
try:
yield json.loads(response.decode('utf-8'))
except ValueError:
raise core_exceptions.Error(
'No JSON object could be decoded from the HTTP response body:\n'
+ six.text_type(response)
)
@base.DefaultUniverseOnly
@base.ReleaseTracks(base.ReleaseTrack.GA)
class StreamRawPredict(base.Command):
"""Run Vertex AI online stream raw prediction.
`{command}` sends a stream raw prediction request to a Vertex AI endpoint. The
request can be given on the command line or read from a file or stdin.
## EXAMPLES
To predict against an endpoint ``123'' under project ``example'' in region
``us-central1'', reading the request from the command line, run:
$ {command} 123 --project=example --region=us-central1 --request='{
"instances": [
{ "values": [1, 2, 3, 4], "key": 1 },
{ "values": [5, 6, 7, 8], "key": 2 }
]
}'
If the request body was in the file ``input.json'', run:
$ {command} 123 --project=example --region=us-central1 --request=@input.json
To send the image file ``image.jpeg'' and set the *content type*, run:
$ {command} 123 --project=example --region=us-central1
--http-headers=Content-Type=image/jpeg --request=@image.jpeg
"""
@staticmethod
def Args(parser):
_AddArgs(parser)
def Run(self, args):
return _Run(args, constants.GA_VERSION)
@base.DefaultUniverseOnly
@base.ReleaseTracks(base.ReleaseTrack.BETA, base.ReleaseTrack.ALPHA)
class StreamRawPredictBeta(StreamRawPredict):
"""Run Vertex AI online stream raw prediction.
`{command}` sends a stream raw prediction request to a Vertex AI endpoint. The
request can be given on the command line or read from a file or stdin.
## EXAMPLES
To predict against an endpoint ``123'' under project ``example'' in region
``us-central1'', reading the request from the command line, run:
$ {command} 123 --project=example --region=us-central1 --request='{
"instances": [
{ "values": [1, 2, 3, 4], "key": 1 },
{ "values": [5, 6, 7, 8], "key": 2 }
]
}'
If the request body was in the file ``input.json'', run:
$ {command} 123 --project=example --region=us-central1 --request=@input.json
To send the image file ``image.jpeg'' and set the *content type*, run:
$ {command} 123 --project=example --region=us-central1
--http-headers=Content-Type=image/jpeg --request=@image.jpeg
"""
def Run(self, args):
return _Run(args, constants.BETA_VERSION)