File: //snap/google-cloud-cli/current/lib/googlecloudsdk/command_lib/ai/validation.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Utilities for validating parameters."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
from googlecloudsdk.calliope import exceptions
from googlecloudsdk.command_lib.ai import constants
def ValidateDisplayName(display_name):
"""Validates the display name."""
if display_name is not None and not display_name:
raise exceptions.InvalidArgumentException(
'--display-name', 'Display name can not be empty.'
)
def ValidateRegion(region, available_regions=constants.SUPPORTED_REGION):
"""Validates whether a given region is among the available ones."""
if region not in available_regions:
raise exceptions.InvalidArgumentException(
'region',
'Available values are [{}], but found [{}].'.format(
', '.join(available_regions), region
),
)
def GetAndValidateKmsKey(args):
"""Parse CMEK resource arg, and check if the arg was partially specified."""
if hasattr(args.CONCEPTS, 'kms_key'):
kms_ref = args.CONCEPTS.kms_key.Parse()
if kms_ref:
return kms_ref.RelativeName()
else:
for keyword in ['kms_key', 'kms_keyring', 'kms_location', 'kms_project']:
if getattr(args, keyword, None):
raise exceptions.InvalidArgumentException(
'--kms-key', 'Encryption key not fully specified.'
)
def ValidateAutoscalingMetricSpecs(specs):
"""Value validation for autoscaling metric specs target name and value."""
if specs is None:
return
for key, value in specs.items():
if key not in constants.OP_AUTOSCALING_METRIC_NAME_MAPPER:
raise exceptions.InvalidArgumentException(
'--autoscaling-metric-specs',
"""Autoscaling metric name can only be one of the following: {}.""".format(
', '.join([
"'{}'".format(c)
for c in sorted(
constants.OP_AUTOSCALING_METRIC_NAME_MAPPER.keys()
)
])
),
)
if key == 'request-counts-per-minute':
if value <= 0:
raise exceptions.InvalidArgumentException(
'--autoscaling-metric-specs',
'Metric target for request-counts-per-minute must be a positive'
' value.',
)
elif value <= 0 or value > 100:
raise exceptions.InvalidArgumentException(
'--autoscaling-metric-specs',
'Metric target value {} for {} is not between 0 and 100.'.format(
value, key
),
)
def ValidateRequiredReplicaCount(required_replica_count, min_replica_count):
"""Value validation for required replica count."""
if required_replica_count is not None:
min_replica_count = min_replica_count or 1
if required_replica_count > min_replica_count:
raise exceptions.InvalidArgumentException(
'--required-replica-count',
'Value must be less than or equal to min-replica-count.'
)
def ValidateScaleToZeroArgs(
min_replica_count=None,
initial_replica_count=None,
max_replica_count=None,
min_scaleup_period=None,
idle_scaledown_period=None,
):
"""Value validation for scale-to-zero args."""
# Validation for initial replica count.
if initial_replica_count is not None:
if min_replica_count is None:
raise exceptions.InvalidArgumentException(
'--initial-replica-count',
"""Cannot set initial-replica-count without explicitly setting
min-replica-count to 0 to enable scale-to-zero.""",
)
if min_replica_count > 0:
raise exceptions.InvalidArgumentException(
'--initial-replica-count',
"""Cannot set initial-replica-count when min-replica-count > 0 as
scale-to-zero will not be enabled.""",
)
if (
max_replica_count is not None
and max_replica_count < initial_replica_count
):
raise exceptions.InvalidArgumentException(
'--initial-replica-count',
"""Initial-replica-count must be smaller than max replica count.""",
)
# Validation for STZConfig args with min replica count > 0.
if min_scaleup_period is not None:
if min_replica_count is None:
raise exceptions.InvalidArgumentException(
'--min-scaleup-period',
"""Cannot set min-scaleup-period without explicitly setting
min-replica-count to 0 to enable scale-to-zero.""",
)
if min_replica_count > 0:
raise exceptions.InvalidArgumentException(
'--min-scaleup-period',
"""Cannot set min-scaleup-period when min-replica-count > 0 as
scale-to-zero will not be enabled.""",
)
if idle_scaledown_period is not None:
if min_replica_count is None:
raise exceptions.InvalidArgumentException(
'--idle-scaledown-period',
"""Cannot set idle-scaledown-period without explicitly setting
min-replica-count to 0 to enable scale-to-zero.""",
)
if min_replica_count > 0:
raise exceptions.InvalidArgumentException(
'--idle-scaledown-period',
"""Cannot set idle-scaledown-period when min-replica-count > 0 as
scale-to-zero will not be enabled.""",
)
def ValidateSharedResourceArgs(
shared_resources_ref=None,
machine_type=None,
accelerator_dict=None,
min_replica_count=None,
max_replica_count=None,
required_replica_count=None,
autoscaling_metric_specs=None,
):
"""Value validation for dedicated resource args while making a shared resource command call.
Args:
shared_resources_ref: str or None, the shared deployment resource pool
full name the model should use, formatted as the full URI
machine_type: str or None, the type of the machine to serve the model.
accelerator_dict: dict or None, the accelerator attached to the deployed
model from args.
min_replica_count: int or None, the minimum number of replicas the
deployed model will be always deployed on.
max_replica_count: int or None, the maximum number of replicas the
deployed model may be deployed on.
required_replica_count: int or None, the required number of replicas the
deployed model will be considered successfully deployed.
autoscaling_metric_specs: dict or None, the metric specification that
defines the target resource utilization for calculating the desired
replica count.
"""
if shared_resources_ref is None:
return
if machine_type is not None:
raise exceptions.InvalidArgumentException(
'--machine-type',
"""Cannot use
machine type and shared resources in the same command.""",
)
if accelerator_dict is not None:
raise exceptions.InvalidArgumentException(
'--accelerator',
"""Cannot
use accelerator and shared resources in the same command.""",
)
if min_replica_count is not None:
raise exceptions.InvalidArgumentException(
'--min-replica-count',
"""Cannot
use min replica count and shared resources in the same command.""",
)
if max_replica_count is not None:
raise exceptions.InvalidArgumentException(
'--max-replica-count',
"""Cannot
use max replica count and shared resources in the same command.""",
)
if required_replica_count is not None:
raise exceptions.InvalidArgumentException(
'--required-replica-count',
"""Cannot
use required replica count and shared resources in the same command.""",
)
if autoscaling_metric_specs is not None:
raise exceptions.InvalidArgumentException(
'--autoscaling-metric-specs',
"""Cannot use autoscaling metric specs
and shared resources in the same command.""",
)
def ValidateEndpointArgs(network=None, public_endpoint_enabled=None):
"""Validates the network and public_endpoint_enabled."""
if network is not None and public_endpoint_enabled:
raise exceptions.InvalidArgumentException(
'Please either set --network for private endpoint, or set'
' --public-endpoint-enabled',
'for public enpdoint.',
)
def ValidateModelGardenModelArgs(args):
"""Validates the model garden model args."""
if args.model is not None and not args.model:
raise exceptions.InvalidArgumentException(
'--model',
'Model name should not be empty.',
)
if (
len(args.model.split('/')) != 2
or len(args.model.split('/')[1].split('@')) > 2
):
raise exceptions.InvalidArgumentException(
'--model',
'Model name should be in the format of Model Garden, e.g.'
' `{publisher_name}/{model_name}@{model_version_name}, e.g.'
' `google/gemma2@gemma-2-2b` or in the format of Hugging Face'
' convention, e.g. `meta-llama/Meta-Llama-3-8B`. You can use the'
' `gcloud ai model-garden models list` command to find supported'
' models.',
)