File: //snap/google-cloud-cli/396/lib/googlecloudsdk/command_lib/dataproc/jobs/spark_r.py
# -*- coding: utf-8 -*- #
# Copyright 2015 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Base class for SparkR Job."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
import argparse
from apitools.base.py import encoding
from googlecloudsdk.calliope import arg_parsers
from googlecloudsdk.command_lib.dataproc.jobs import base as job_base
from googlecloudsdk.command_lib.dataproc.jobs import util as job_util
class SparkRBase(job_base.JobBase):
"""Submit a SparkR job to a cluster."""
@staticmethod
def Args(parser):
"""Performs command-line argument parsing specific to SparkR."""
parser.add_argument('r_file', help='Main .R file to run as the driver.')
parser.add_argument(
'--files',
type=arg_parsers.ArgList(),
metavar='FILE',
default=[],
help='Comma separated list of files to be placed in the working '
'directory of both the app driver and executors.')
parser.add_argument(
'--archives',
type=arg_parsers.ArgList(),
metavar='ARCHIVE',
default=[],
help=(
'Comma separated list of archives to be extracted into the working '
'directory of each executor. '
'Must be one of the following file formats: .zip, .tar, .tar.gz, '
'or .tgz.'))
parser.add_argument(
'job_args',
nargs=argparse.REMAINDER,
help='Arguments to pass to the driver.')
parser.add_argument(
'--properties',
type=arg_parsers.ArgDict(),
metavar='PROPERTY=VALUE',
help='List of key value pairs to configure SparkR. For a list of '
'available properties, see: '
'https://spark.apache.org/docs/latest/'
'configuration.html#available-properties.')
parser.add_argument(
'--properties-file',
help=job_util.PROPERTIES_FILE_HELP_TEXT)
parser.add_argument(
'--driver-log-levels',
type=arg_parsers.ArgDict(),
metavar='PACKAGE=LEVEL',
help=('List of key value pairs to configure driver logging, where key '
'is a package and value is the log4j log level. For '
'example: root=FATAL,com.example=INFO'))
@staticmethod
def GetFilesByType(args):
return {
'r_file': args.r_file,
'archives': args.archives,
'files': args.files
}
@staticmethod
def ConfigureJob(messages, job, files_by_type, logging_config, args):
"""Populates the sparkRJob member of the given job."""
spark_r_job = messages.SparkRJob(
args=args.job_args or [],
archiveUris=files_by_type['archives'],
fileUris=files_by_type['files'],
mainRFileUri=files_by_type['r_file'],
loggingConfig=logging_config,
)
job_properties = job_util.BuildJobProperties(
args.properties, args.properties_file
)
if job_properties:
spark_r_job.properties = encoding.DictToMessage(
job_properties, messages.SparkRJob.PropertiesValue
)
job.sparkRJob = spark_r_job