File: //snap/google-cloud-cli/394/platform/gsutil/third_party/pyparsing/examples/number_words.py
# number_words.py
#
# Copyright 2020, Paul McGuire
#
# Parser/evaluator for expressions of numbers as written out in words:
# - one
# - seven
# - twelve
# - twenty six
# - forty-two
# - one hundred and seven
#
#
# BNF:
# optional_and ::= ["and" | "-"]
# optional_dash ::= ["-"]
# units ::= "one" | "two" | "three" | ... | "nine"
# ten ::= "ten"
# tens ::= "twenty" | "thirty" | ... | "ninety"
# one_to_99 ::= units | ten | teens | (tens [optional_dash units])
# teens ::= "eleven" | "twelve" | ... | "nineteen"
# hundreds ::= (units | teens | tens optional_dash units) "hundred"
# thousands ::= one_to_99 "thousand"
#
# # number from 1-999,999
# number ::= [thousands [optional_and]] [hundreds[optional_and]] one_to_99
# | [thousands [optional_and]] hundreds
# | thousands
#
import pyparsing as pp
from operator import mul
def define_numeric_word_range(
names: str, from_: int, to_: int = None, step: int = 1
) -> pp.MatchFirst:
"""
Compose a MatchFirst of CaselessKeywords, given their names and values,
which when parsed, are converted to their value
"""
def define_numeric_word(nm: str, val: int):
return pp.CaselessKeyword(nm).add_parse_action(lambda: val)
names = names.split()
if to_ is None:
to_ = from_
values = range(from_, to_ + 1, step)
ret = pp.MatchFirst(
define_numeric_word(name, value) for name, value in zip(names, values)
)
if len(names) == 1:
ret.set_name(names[0])
else:
ret.set_name(f"{names[0]}-{names[-1]}")
return ret
def multiply(t):
"""
Parse action for hundreds and thousands.
"""
return mul(*t)
opt_dash = pp.Opt(pp.Suppress("-")).set_name("'-'")
opt_and = pp.Opt((pp.CaselessKeyword("and") | "-").suppress()).set_name("'and/-'")
units = define_numeric_word_range("one two three four five six seven eight nine", 1, 9)
teens = define_numeric_word_range(
"eleven twelve thirteen fourteen fifteen sixteen seventeen eighteen nineteen",
11,
19,
)
ten = define_numeric_word_range("ten", 10)
tens = define_numeric_word_range(
"twenty thirty forty fifty sixty seventy eighty ninety", 20, 90, 10
)
hundred = define_numeric_word_range("hundred", 100)
thousand = define_numeric_word_range("thousand", 1000)
one_to_99_except_tens = (units | teens | (tens + opt_dash + units)).set_name("1-99 except tens")
one_to_99_except_tens.add_parse_action(sum)
one_to_99 = (one_to_99_except_tens | ten | tens).set_name("1-99")
one_to_99.add_parse_action(sum)
hundreds = one_to_99_except_tens + hundred
hundreds.set_name("100s")
one_to_999 = (
(pp.Opt(hundreds + opt_and) + one_to_99 | hundreds).add_parse_action(sum)
).set_name("1-999")
thousands = one_to_999 + thousand
thousands.set_name("1000s")
# for hundreds and thousands, must scale up (multiply) accordingly
hundreds.add_parse_action(multiply)
thousands.add_parse_action(multiply)
numeric_expression = (
pp.Opt(thousands + opt_and) + pp.Opt(hundreds + opt_and) + one_to_99
| pp.Opt(thousands + opt_and) + hundreds
| thousands
).set_name("numeric_words")
# sum all sub-results into total
numeric_expression.add_parse_action(sum)
if __name__ == "__main__":
import contextlib
with contextlib.suppress(Exception):
# create railroad diagram
numeric_expression.create_diagram("number_words_diagram.html", vertical=5)
numeric_expression.run_tests(
"""
one
seven
twelve
twenty six
forty-two
two hundred
twelve hundred
one hundred and eleven
seven thousand and six
twenty five hundred
twenty five hundred and one
ninety nine thousand nine hundred and ninety nine
nine hundred thousand nine hundred and ninety nine
nine hundred and ninety nine thousand nine hundred and ninety nine
nineteen hundred thousand nineteen hundred and ninety nine
# invalid
twenty hundred
""",
postParse=lambda _, s: "{:,}".format(s[0]),
)