File: //snap/google-cloud-cli/394/lib/surface/ai/custom_jobs/local_run.py
# -*- coding: utf-8 -*- #
# Copyright 2020 Google LLC. All Rights Reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
"""Command to run a training application locally."""
from __future__ import absolute_import
from __future__ import division
from __future__ import unicode_literals
import os
import textwrap
from googlecloudsdk.calliope import base
from googlecloudsdk.command_lib.ai.custom_jobs import flags
from googlecloudsdk.command_lib.ai.custom_jobs import local_util
from googlecloudsdk.command_lib.ai.custom_jobs import validation
from googlecloudsdk.command_lib.ai.docker import build as docker_builder
from googlecloudsdk.command_lib.ai.docker import run as docker_runner
from googlecloudsdk.core import log
from googlecloudsdk.core.util import files
@base.ReleaseTracks(base.ReleaseTrack.GA, base.ReleaseTrack.BETA,
base.ReleaseTrack.ALPHA)
class Create(base.CreateCommand):
"""Run a custom training locally.
Packages your training code into a Docker image and executes it locally.
"""
detailed_help = {
'DESCRIPTION':
textwrap.dedent("""\
{description}
You should execute this command in the top folder which includes all
the code and resources you want to pack and run, or specify the
'work-dir' flag to point to it. Any other path you specified via flags
should be a relative path to the work-dir and under it; otherwise it
will be unaccessible.
Supposing your directories are like the following structures:
/root
- my_project
- my_training
- task.py
- util.py
- setup.py
- other_modules
- some_module.py
- dataset
- small.dat
- large.dat
- config
- dep
- foo.tar.gz
- bar.whl
- requirements.txt
- another_project
- something
If you set 'my_project' as the package, then you should
execute the task.py by specifying "--script=my_training/task.py" or
"--python-module=my_training.task", the 'requirements.txt' will be
processed. And you will also be able to install extra packages by,
e.g. specifying "--extra-packages=dep/foo.tar.gz,bar.whl" or include
extra directories, e.g. specifying "--extra-dirs=dataset,config".
If you set 'my_training' as the package, then you should
execute the task.py by specifying "--script=task.py" or
"--python-module=task", the 'setup.py' will be processed. However, you
won't be able to access any other files or directories that are not in
'my_training' folder.
See more details in the HELP info of the corresponding flags.
"""),
'EXAMPLES':
"""\
To execute an python module with required dependencies, run:
$ {command} --python-module=my_training.task --executor-image-uri=gcr.io/my/image --requirements=pandas,scipy>=1.3.0
To execute a python script using local GPU, run:
$ {command} --script=my_training/task.py --executor-image-uri=gcr.io/my/image --gpu
To execute an arbitrary script with custom arguments, run:
$ {command} --script=my_run.sh --executor-image-uri=gcr.io/my/image -- --my-arg bar --enable_foo
To run an existing container training without building new image, run:
$ {command} --executor-image-uri=gcr.io/my/custom-training-image
""",
}
@staticmethod
def Args(parser):
flags.AddLocalRunCustomJobFlags(parser)
def Run(self, args):
args = validation.ValidateLocalRunArgs(args)
with files.ChDir(args.local_package_path):
log.status.Print('Package is set to {}.'.format(args.local_package_path))
executable_image = args.executor_image_uri or args.base_image
if args.script:
# TODO(b/176214485): Consider including the image id in build result.
built_image = docker_builder.BuildImage(
base_image=executable_image,
host_workdir=args.local_package_path,
main_script=args.script,
python_module=args.python_module,
requirements=args.requirements,
extra_packages=args.extra_packages,
extra_dirs=args.extra_dirs,
output_image_name=args.output_image_uri)
executable_image = built_image.name
log.status.Print('A training image is built.')
log.status.Print('Starting to run ...')
docker_runner.RunContainer(
image_name=executable_image,
enable_gpu=args.gpu,
service_account_key=args.service_account_key_file,
user_args=args.args)
log.out.Print(
'A local run is finished successfully using custom image: {}.'.format(
executable_image))
# Clean generated cache
cache_dir, _ = os.path.split(
os.path.join(args.local_package_path, args.script or ''))
if local_util.ClearPyCache(cache_dir):
log.status.Print(
'Cleaned Python cache from directory: {}'.format(cache_dir))